Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Misumi, S., Ohfune, Y., Furusaki, A., Shirahama, H. \& Matsumoto, T. (1976). Tetrahedron Lett. pp. 2865-2868.

Misumi, S., Ohtsuda, T., Нashimoto, H., Ohfune, Y., Shirahama, H. \& Matsumoto, T. (1979). Tetrahedron Lett. pp. 35-38.
Misumi, S., Ohtsuda, T., Ohfune, Y., Sugita, K., Shirahama, H. \& Matsumoto, T. (1979). Tetrahedron Lett. pp. 31-34.

SUTHERLAND, J. K. (1974). Tetrahedron, 30, 1651-1660.
Trauer, H. (1985). Doctoral Dissertation, Karl-Marx-Univ., Leipzig, German Democratic Republic.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1987). C43, 1964-1966

# Structure of Racemic Isoptychanolide 

By Jost H. Bieri, Joan Huguet,* Martin Karpf $\dagger$ and Roland Prewo $\ddagger$<br>Organisch-Chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

(Received 4 February 1987; accepted 18 May 1987)

Abstract. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}, \quad M_{r}=250.34$, triclinic, $P \overline{1}, a$ $=6.890$ (1), $\quad b=6.971$ (1), $\quad c=15.829$ (2) $\AA, \quad \alpha=$ 87.15 (2), $\quad \beta=80.33$ (2), $\quad \gamma=61.97$ (1) ${ }^{\circ}, \quad V=$ 661.2 (2) $\AA^{3}, \quad Z=2, \quad D_{x}=1.26 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71069 \AA, \mu=0.80 \mathrm{~cm}^{-1}, F(000)=272, T \simeq 130 \mathrm{~K}$, $R=0.057$ for 6933 reflections. The configurations of all asymmetric carbon atoms except those in the oxirane ring are equal to those in ptychanolide.

Introduction. Ptychanolide (1) is a natural product whose crystal structure has been published previously (Takeda, Naoki, Iwashita, Mizukawa, Hirose, Isida \& Inoue, 1983). The diastereoisomer isoptychanolide (2) has been synthesized in racemic form (Huguet, Karpf \& Dreiding, 1983; Šolaja, Huguet, Karpf \& Dreiding, 1987). To establish the configuration at the spiro centre and at the oxirane moiety, we have determined its crystal structure.

(1)

(2)

Experimental. A colourless parallelepiped, ca $0.6 \times$ $\because .35 \times 0.3 \mathrm{~mm}$, crystallized from pentane at room mperature, was mounted on a Nicolet R3 four-circle fractometer with LT-1 low-temperature device and graphite monochromator. Unit-cell parameters were obtained from least-squares refinement (Stewart,

[^0]Kruger, Ammon, Dickinson \& Hall, 1972) of both 'positive' and 'negative' $2 \theta$ values of 72 automatically centered reflection positions, $45<|2 \theta|<54^{\circ} .6934$ unique reflections, $0 \leq h \leq 11,-10 \leq k \leq 11,-26 \leq$ $l \leq 27$, were measured in the $\omega$-scan technique within $(\sin \theta) / \lambda=0.857 \AA^{-1}$. Owing to beam-stop impairment 001 was omitted. Three standard reflections, repeated after each 100 reflections, varied at most by $3.5 \%$ from their initial intensities. The intensities were corrected for standard intensity variation and Lp effects but not for absorption. Reflections with $I<0.5 \sigma(I)$ were set to $I=0.25 \sigma(I)$. The structure was solved by direct methods and the 251 parameters (isotropic temperature factors for the H atoms after their location in a difference density map, anisotropic temperature factors for the other atoms, positional parameters for all atoms) were refined by a blocked-cascade least-squares refinement algorithm with ca 100 variables per block using all 6933 unique structure factors, $R=0.057, w R=0.054$, $w=\left[\sigma^{2}(F)+0 \cdot 0004 F^{2}\right]^{-1}, \quad S=2 \cdot 1, \quad(\Delta / \sigma)_{\max }=0 \cdot 04$, $(\Delta \rho)_{\text {max }}=0.47$ (on a bond), $(\Delta \rho)_{\text {min }}=-0.25$ e $\AA^{-3}$, $0.35 \AA$ apart from $\mathrm{C}(10)$. Scattering and dispersion factors were taken from International Tables for X-ray Crystallography (1974). Unless otherwise stated the program system SHELXTL (Sheldrick, 1981) was used for all computerized calculations.

Discussion. Fractional atomic coordinates are given in Table $1, \S$ bond lengths and bond angles in

[^1]Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$ for the non- H atoms of isoptychanolide (2)

|  | $x$ | $y$ | $z$ | $U_{\mathrm{eq}}{ }^{*}$ |
| :--- | ---: | ---: | ---: | ---: |
| C(1) | $8072(1)$ | $3714(1)$ | $1473(1)$ | $20(1)$ |
| $\mathrm{C}(2)$ | $10597(1)$ | $2210(1)$ | $1318(1)$ | $25(1)$ |
| $\mathrm{C}(3)$ | $11025(1)$ | $255(1)$ | $1896(1)$ | $24(1)$ |
| $\mathrm{C}(4)$ | $8713(1)$ | $518(1)$ | $2316(1)$ | $18(1)$ |
| $\mathrm{C}(5)$ | $7931(1)$ | $1768(1)$ | $3198(1)$ | $16(1)$ |
| C(6) | $5338(1)$ | $3063(1)$ | $3298(1)$ | $16(1)$ |
| C(7) | $4805(1)$ | $3350(1)$ | $2370(1)$ | $22(1)$ |
| C(8) | $7040(1)$ | $2175(1)$ | $1756(1)$ | $18(1)$ |
| C(9) | $4093(1)$ | $2058(1)$ | $3873(1)$ | $24(1)$ |
| O(9) | $1660(1)$ | $3410(1)$ | $3950(1)$ | $33(1)$ |
| C(10) | $2769(1)$ | $3572(1)$ | $4592(1)$ | $28(1)$ |
| O(10) | $3099(1)$ | $5419(1)$ | $4523(1)$ | $27(1)$ |
| C(11) | $4500(1)$ | $5236(1)$ | $3771(1)$ | $19(1)$ |
| O(11) | $4940(1)$ | $6683(1)$ | $3561(1)$ | $29(1)$ |
| C(12) | $7229(1)$ | $5128(1)$ | $716(1)$ | $29(1)$ |
| C(13) | $8700(1)$ | $-1670(1)$ | $2390(1)$ | $27(1)$ |
| C(14) | $8835(1)$ | $414(1)$ | $3962(1)$ | $26(1)$ |
| C(15) | $6775(1)$ | $1135(1)$ | $985(1)$ | $27(1)$ |

* Equivalent isotropic $U$ defined as one-third of the trace of the orthogonalized $\mathbf{U}$ tensor.

Table 2. Bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for isoptychanolide (2)

| $\mathrm{C}(1)-\mathrm{C}(2) \quad 1$ | 1.534 (1) | $\mathrm{C}(1)-\mathrm{C}(8) \quad 1$ | 1.555 (1) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(1)-\mathrm{C}(12) \quad 1$. | 1.524 (1) | $\mathrm{C}(2)-\mathrm{C}(3) \quad 1$ | 1.540 (1) |
| $\mathrm{C}(3)-\mathrm{C}(4) \quad 1$ | 1.547 (1) | $\mathrm{C}(4)-\mathrm{C}(5) \quad 1$ | 1.558 (1) |
| $\mathrm{C}(4)-\mathrm{C}(8) \quad \mathrm{I}$ | 1.562 (1) | $\mathrm{C}(4)-\mathrm{C}(13) \quad 1$ | 1.528 (1) |
| $\mathrm{C}(5)-\mathrm{C}(6) \quad 1$ | 1.561 (1) | $\mathrm{C}(5)-\mathrm{C}(14) \quad 1$ | 1.525 (1) |
| $\mathrm{C}(6)-\mathrm{C}(7) \quad 1$ | 1.554 (1) | $\mathrm{C}(6)-\mathrm{C}(9) \quad 1$ | 1.515 (1) |
| $\mathrm{C}(6)-\mathrm{C}(11) \quad 1$. | 1.528 (1) | $\mathrm{C}(7)-\mathrm{C}(8) \quad 1$ | 1.542 (1) |
| $\mathrm{C}(8)-\mathrm{C}(15) \quad 1$. | 1.530 (1) | $\mathrm{C}(9)-\mathrm{O}(9) \quad 1$ | 1.474 (1) |
| $\mathrm{C}(9)-\mathrm{C}(10) \quad 1$ | 1.451 (1) | $\mathrm{O}(9)-\mathrm{C}(10) \quad 1$ | 1.409 (1) |
| $\mathrm{C}(10)-\mathrm{O}(10) \quad 1$ | 1.405 (1) | $\mathrm{O}(10)-\mathrm{C}(11) \quad 1$ | 1.370 (1) |
| $\mathrm{C}(11)-\mathrm{O}(11) \quad 1$ | 1.200 (1) |  |  |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)$ | 104.5 (1) | $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(12)$ | 113.5 (1) |
| $\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(12)$ | 115.8 (1) | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $106 \cdot 8$ (1) |
| C(2)-C(3)-C(4) | $106 \cdot 7$ (1) | $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $110 \cdot 8$ (1) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)$ | 105.2 (1) | $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)$ | 102.4 (1) |
| C(3)-C(4)-C(13) | 111.6 (1) | $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(13)$ | 112.0 (1) |
| $\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(13)$ | 114.3 (1) | $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | 105.4 (1) |
| C(4)-C(5)-C(14) | 116.1 (1) | $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(14)$ | $115 \cdot 3$ (1) |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | $105 \cdot 5$ (1) | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)$ | 115.2 (1) |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(9)$ | 112.6 (1) | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)$ | 109.8 (1) |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$ | 112.5 (1) | $\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(11)$ | 101.4 (1) |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | 107.3 (1) | $\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(4)$ | 102.6 (1) |
| $\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(7)$ | 111.8 (1) | $\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(7)$ | 105.4 (1) |
| C(1)-C(8)-C(15) | 111.6 (1) | $\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(15)$ | 114.1 (1) |
| C(7)-C(8)-C(15) | 111.0 (1) | $\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{O}(9)$ | 111.7 (1) |
| $\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(10)$ | 107.4 (1) | $\mathrm{O}(9)-\mathrm{C}(9)-\mathrm{C}(10)$ | 57.6 (1) |
| $\mathrm{C}(9)-\mathrm{O}(9)-\mathrm{C}(10)$ | $60 \cdot 4$ (1) | $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(9)$ | 62.0 (I) |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(10)$ | $110 \cdot 5$ (1) | $\mathrm{O}(9)-\mathrm{C}(10)-\mathrm{O}(10)$ | 113.0 (1) |
| $\mathrm{C}(10)-\mathrm{O}(10)-\mathrm{C}(11)$ | ) 108.7 (1) | $\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{O}(10)$ | 111.8 (1) |
| $\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{O}(11)$ | 128.0 (1) | $\mathrm{O}(10)-\mathrm{C}(11)-\mathrm{O}(11)$ | ) 120.2 (1) |

Table 2. As can be seen from Figs. 1 and 2, (2) differs from (1) only in the position of the epoxide oxygen, which is on the other side of the lactone ring plane. The differences in the bond lengths generally do not exceed $0.02 \AA$. Exceptions are C(4)C(5), which is 0.028 (9) $\AA$ shorter, and all three oxirane bonds, which are significantly shorter in (1). The reason for this is not clear. Stereoelectronic effects (Kirby, 1983) between

Table 3. Bond lengths $(\AA)$ in oxyoxiranes

| CSD Refcode/ | $a$ | $b$ | $c$ | $d$ | e.s.d.'s <br> (class) |
| :--- | ---: | ---: | ---: | ---: | :--- |
| Compound No. |  |  |  |  |  |
| BURRAH/(1) | 1.422 | 1.442 | 1.368 | 1.412 | $0.007-0.011$ |
| (2) | 1.451 | 1.474 | 1.409 | 1.405 | 0.001 |
| BINJOX | 1.473 | 1.467 | 1.444 | 1.369 | $0.011-0.03$ |
| BUHSEC | 1.489 | 1.466 | 1.423 | 1.392 | not given |
| ECOTDA | 1.451 | 1.461 | 1.411 | 1.432 | $0.001-0.005$ |
| FLOCOS | 1.463 | 1.444 | 1.443 | 1.363 | $0.001-0.005$ |



Fig. 1. Molecular drawing of (2). The H atoms are depicted with an arbitrary radius, the other atoms with their $50 \%$ thermal ellipsoids.


Fig. 2. Stereoscopic overlay plot of (1) and (2) by minimizing the distances between equivalent atoms of the bicyclooctane skeletons. (1) is shown with dashed bonds. H atoms were omitted.
$O(9)$ and $O(10)$ should be almost the same in the two structures, the torsion angle $\mathrm{O}(9) \mathrm{C}(10) \mathrm{O}(10) \mathrm{C}(11)$ being $-64.6(1)^{\circ}$ in (2) and $62.6(7)^{\circ}$ in (1). In a comparison with four other structures taken from the Cambridge Structural Database (Allen et al., 1979), which have an oxirane function and an additional $O$ atom attached to it by a single bond (see Table 3), the three above-mentioned distances are again shortest in (1). In all structures bond $c$ is shorter than bond $b$ but with differing significance.

The two cis-fused pentacycles may be approximately described as envelopes in (1) and (2). In ring $C(1), C(2), C(3), C(4), C(8)$ atom $C(8)$ is out of plane, in ring $C(4), C(5), C(6), C(7), C(8)$ it is $C(4)$. The largest intra-annular torsion angles in these rings are below
$39^{\circ}$ (absolute values). The lactone rings are much less puckered. That of (1) is close to the twist form. Its largest intra-annular torsion angle is $\mathrm{C}(9) \mathrm{C}(6) \mathrm{C}(11)$ $O(10)$ with $-12 \cdot 2(7)^{\circ}$. The lactone ring of (2) is almost flat. Its largest torsional angle, $\mathrm{C}(10) \mathrm{O}(10)$ $\mathrm{C}(11) \mathrm{C}(6)$, is $-3.7(1)^{\circ}$.

## References

Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., HummelinkPeters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson, D. G. (1979). Acta Cryst. B35, 2331-2339.
Huguet, J., Karpf, M. \& Dreiding, A. S. (1983). Tetrahedron Lett. p. 4177.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Kirby, A. J. (1983). The Anomeric Effect and Related Stereoelectronic Effects at Oxygen, pp. 52-61. Berlin: Springer.
Sheldrick, G. M. (1981). SHELXTL. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Revision 3.0. Univ. of Göttingen, Federal Republic of Germany.
Šolaja, B., Huguet, J., Karpf, M. \& Dreiding, A. S. (1987). Tetrahedron. Submitted.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. W. \& Hall, S. R. (1972). The XRA Y72 system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
Takeda, R., Naoki, H., Iwashita, T., Mizukawa, K., Hirose, Y., Isida, T. \& Inoue, M. (1983). Bull. Chem. Soc. Jpn, 56, 1125-1 132.

# Conformational Effects in Methoxybenzenes Caused by Ortho Disubstitution. I. Pentachloromethoxybenzene 

By Kari Rissanen, Jussi Valkonen and Juha Knuutinen<br>Department of Chemistry, University of Jyväskylä, SF-40100 Jyväskylä, Finland

(Received 9 January 1987; accepted 18 May 1987)


#### Abstract

C}_{7} \mathrm{H}_{3} \mathrm{Cl}_{5} \mathrm{O}, M_{r}=280 \cdot 37\), monoclinic, $P 2_{1}$, $a=8.636$ (3),$\quad b=3.935$ (5), $\quad c=16.925$ (7) $\AA, \quad \beta=$ $120.30(5)^{\circ}, V=496.6 \AA^{3}, Z=2, D_{x}=1.87 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda($ Mo $K \alpha)=0.7107 \AA, \mu=1.42 \mathrm{~mm}^{-1}, F(000)=276$, $T=296 \mathrm{~K}$, final $R=0.054$ for 775 unique observed reflections. Ortho disubstitution forces the methoxy group to move out of the benzene plane, so that the methoxy C atom [C(7)] is $1.182(13) \AA$ above and the methoxy $O$ atom $[O(1)] 0.135$ (9) $\AA$ below the calculated least-squares plane $[\mathrm{C}(1)-\mathrm{C}(6)]$. The angle $\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(1)$ is $112.2(9)^{\circ}$. The rest of the molecule is nearly planar: maximum distance from the least-squares plane is 0.037 (4) $\AA[\mathrm{Cl}(2)]$.


Introduction. Chlorinated methoxybenzenes (anisoles) and 1,2-dimethoxybenzenes (veratroles) have been shown to be formed by bacterial biomethylation of chlorinated phenols, 1,2-benzenediols (pyrocatechols) and 2-methoxyphenols (guaiacols), which are produced in chlorobleaching processes in kraft pulp mills (Knuutinen, 1984). These same compounds are considered as potential off-flavour compounds and are frequently detected in environmental samples (Paasivirta et al., 1983).

Quantum-chemical and spectroscopic studies (Anderson, Kollman, Domelsmith \& Houk, 1979; Kolehmainen \& Knuutinen, 1983) have revealed that
ortho disubstitution causes drastic changes in the spatial arrangement of the methoxy group. Methoxybenzenes lacking ortho disubstitution are planar, but when ortho disubstitution occurs the methoxy group moves out of the benzene plane.

The purpose of our study was to solve the molecular structure of pentachloromethoxybenzene and determine the degree of out-of-plane displacement of the methoxy group caused by ortho disubstitution.

Experimental. Colourless crystals (m.p. 377-379 K) synthesized by refluxing pentachlorophenol with potassium carbonate and methyl iodide in acetone (Knuutinen \& Korhonen, 1987), $0.40 \times 0.50 \times$ 0.65 mm , mounted on a glass fibre; Enraf-Nonius CAD-4 diffractometer; graphite-monochromatized Mo $K \alpha ; \omega-2 \theta$ method; lattice parameters from 25 reflections with $9<\theta<17^{\circ}$; two standard reflections measured every hour, no loss of intensity; 1000 reflections ( $h: 0 \rightarrow 10, k: 0 \rightarrow 4, l:-20 \rightarrow 20$ ) with $\theta<25^{\circ}$, 1000 independent, 775 with $I>3 \sigma(I)$; Lp correction; empirical absorption correction (Walker \& Stuart, 1983), correction factors: $\max .=1.195$ and $\min$. $=0.934$; direct methods; refinement by full-matrix least-squares method using unit weights and $F$ s; all non- H atoms anisotropic; all H atoms calculated and used as riding atoms in final refinement ( $\mathrm{C}-\mathrm{H}$ distance
(c) 1987 International Union of Crystallography


[^0]:    * Present address: Syntex SA, DIPR 2822, 11000 Mexico City 10, DF, Mexico.
    † Present address: F. Hoffmann-La Roche \& Co. AG, Zentrale Forschungseinheiten, CH-4002 Basel, Switzerland.
    $\ddagger$ To whom correspondence should be addressed.

[^1]:    § Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44061 (43 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

